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Abstract 
 

Background: Traumatic brain injury (TBI) prognostic prediction models offer value to 

individualized treatment planning, systematic outcome assessments and clinical research design 

but require continuous external validation to ensure generalizability to different settings. The 

Corticosteroid Randomization After Significant Head Injury (CRASH) and International Mission 

on Prognosis and Analysis on Clinical Trials in TBI (IMPACT) models are widely available but 

lack robust assessments of performance in a current national sample of patients. The purpose of 

this study is to assess the performance of the CRASH-Basic and IMPACT-Core models in 

predicting in-hospital mortality using a nationwide retrospective cohort from the National 

Trauma Data Bank (NTDB). 

Methods: The 2016 NTDB was used to analyze an adult cohort with moderate-severe TBI 

(Glasgow Coma Scale [GCS] ≤ 12, head Abbreviated Injury Scale of 2-6). Observed in-hospital 

mortality or discharge to hospice was compared to the CRASH-Basic and IMPACT-Core 

models’ predicted probability of 14-day or 6-month mortality, respectively. Performance 

measures included discrimination (area under the receiver operating characteristic curve [AUC]) 

and calibration (calibration plots and Brier scores). Further sensitivity analysis included patients 

with GCS ≤ 14 and considered patients discharged to hospice to be alive at 14-days. 

Results: A total of 26,228 patients were included in this study. Both models demonstrated good 

ability in differentiating between patients who died and those who survived, with IMPACT 

demonstrating a marginally greater AUC (0.863; 95% CI: 0.858 – 0.867) than CRASH (0.858; 

0.854 – 0.863); p < 0.001. On calibration, IMPACT overpredicted at lower scores and 

underpredicted at higher scores but had good calibration-in-the-large (indicating no systemic 

over/underprediction), while CRASH consistently underpredicted mortality. Brier scores were 
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similar (0.152 for IMPACT, 0.162 for CRASH). Both models showed slight improvement in 

performance when including patients with GCS ≤ 14. 

Conclusion: Both CRASH-Basic and IMPACT-Core models accurately predict in-hospital 

mortality following moderate-severe TBI, and IMPACT-Core performs well beyond its original 

GCS cut-off of 12. By demonstrating validity in the NTDB, these models appear generalizable to 

new data and offer value to current practice in diverse settings as well as to large-scale research 

design.
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Introduction 
 

Traumatic brain injury (TBI) affects an estimated sixty-nine million people per year worldwide 

and contributes to global death and disability more than any other traumatic injury [1]. In the 

United States, there were approximately 2.5 million emergency department (ED) visits and 

56,000 deaths related to TBI in 2013 [2]. The economic impact of TBI is troubling as well. In 

2010, the lifetime direct and indirect costs of TBI were approximately $76.5 billion, with 90% of 

total cost resulting from TBIs that are fatal or require hospitalization [3,4]. 

 

Ultimately, effective and efficient management is imperative to minimize disability and 

mortality.[5] Recently, much focus has been applied to generating standardized management 

guidelines for acute care of TBI patients [6,7]. Still, there are a myriad of ways to categorize 

patients with respect to mechanism of insult, clinical severity and pathophysiology, each of 

which may influence management and prognosis. The complex and heterogeneous nature of TBI 

often leads to uncertainty in expected patient outcomes and has significantly limited research 

design and clinical trial results [8–10]. As a result, a lack of robust randomized controlled trials 

(RCTs) has weakened evidence that supports the benefit of many treatment concepts [11–13]. 

Predictive prognostic models for TBI have previously been developed with the intent of 

producing an effective method for facilitating early clinical decisions, and validated prognostic 

models offer value to clinical care, research design and policy making [14]. 

 

When treating patients, these models may be used alongside clinical assessment in order to 

support decisions on treatment and counsel family members on expected outcomes and risks 

[15–17]. Utilizing prognostic tools in goals-of-care decisions helps to limit subjective variability 
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among physicians, and exposure to CRASH risk score data has been shown to reduce 

overoptimistic prognostication [18–20]. Additionally, decision making surrogates prefer numeric 

estimates to reduce uncertainty surrounding a loved one’s prognosis [21]. In thinking about the 

health care system as a whole, prognostic models are critical in the optimization of resource 

allocation and to classify severity based on prognostic risk and establish a baseline for clinical 

audits.[9,16] In research, they provide tools for comparative analysis research and development 

of stratified randomization protocols during enrollment into clinical trials [9,22]. 

 

In order to meet methodological standards, prediction models must include adequately large 

cohort sizes and undergo internal and external validation [23]. Currently, the best-established 

prognostic models are the International Mission on Prognosis and Analysis of randomized 

Controlled Trials in TBI (IMPACT) [14] and the Corticosteroid Randomization After Significant 

Head Injury (CRASH) models [24]. IMPACT predicts six-month mortality after moderate and 

severe TBI, while the CRASH model predicts two week and six-month mortality in these 

injuries. Both models were developed using large datasets and were externally validated against 

each other’s patient dataset [14,24]. Still, these models must be routinely evaluated to assure 

their generalizability to other settings and their validity in current practice. 

 

The CRASH and IMPACT models have only been validated in cohorts much smaller than the 

original developmental datasets. Current validation studies have mainly utilized single-

institution, multi-center or regional patient populations, further limiting generalizability to a 

nationwide population. Additionally, no study has evaluated the performance of IMPACT 
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alongside CRASH when predicting short-term outcomes in a heterogeneous, nationwide 

database, nor has any study evaluated IMPACT’s performance in mild-moderate TBI patients. 

The purpose of this study is to assess the ability of these models for prediction of in-hospital 

mortality using a large nationwide retrospective cohort derived from the National Trauma Data 

Bank (NTDB). Additionally, we aim to assess the performance of IMPACT using an expanded 

GCS cut-off of 14 and below (as was done in the CRASH study) in order to determine its 

predictive value with inclusion of mild TBI patients.  

Materials and Methods 

Predictive models  

The development of the IMPACT [14] and CRASH [24] models have been previously described 

and their calculators are available online (IMPACT, CRASH). Each model includes base 

versions as well as more elaborate iterations with additional variables. Previous external 

validation efforts have demonstrated good prognostic accuracy for the base CRASH and 

IMPACT predictive models with marginal improvement when using the more elaborate 

iterations [14,25]. For the present investigation, we used the CRASH-Basic and IMPACT-Core 

models to predict in-hospital mortality.  

 

CRASH 

The CRASH model was derived from a cohort of 10,008 adults in the CRASH trial (1999 to 

2005). Participants in this trial had a GCS ≤ 14 and came from 49 countries (with 75% coming 

from low and middle-income countries). The CRASH model predicts mortality at 14 days and 

unfavorable outcome at six months. The base model includes age, total GCS, pupillary reactivity, 

and major extracranial injury.   

http://www.tbi-impact.org/?p=impact%2Fcalc&btn_calc=GO+TO+CALCULATOR
http://www.crash.lshtm.ac.uk/Risk%20calculator/
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IMPACT 

The IMPACT model was derived from 8,509 participants across 8 randomized trials and 3 

observational studies (from 1984 to 1997). Participants in the IMPACT database had a GCS ≤ 12 

and were aged ≥ 14 years old. The IMPACT model predicts mortality and unfavorable outcome 

at six months, and the base model includes age, motor GCS, and pupillary reactivity.  Relevant 

differences in the variables included and predicted outcomes from the two models are 

summarized in TABLE 1, and an overview of the two study populations the models were trained 

on is summarized in TABLE 2. 

 

Validation data 

To validate the CRASH and IMPACT scoring systems, we used data from the 2016 National 

Trauma Data Bank (NTDB). In our primary analysis, we considered patients with TBI as those 

having a head Abbreviated Injury Scale (AIS) between 2 to 6, total GCS ≤ 12, and who were 

aged 14 years or older. Our primary endpoint of mortality was defined as a composite of in-

hospital mortality (including death in the emergency department) or discharge to hospice. We 

compared the observed mortality in the NTDB to the probability of 14-day mortality predicted 

by the CRASH-Basic model, and the probability of 6-month mortality predicted by the 

IMPACT-Core model. 

 

We defined major extracranial injury (used in the CRASH model) as an AIS greater than 2 in a 

region that is not the head, as has been previously described [26]. All other predictors (age, total 
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GCS, motor GCS, pupillary response) were used as reported in the NTDB. Patients with missing 

data for age, pupillary response, total GCS, or hospital disposition were excluded from the 

analysis, as were those who were dead on arrival to the emergency department (ED) or 

transferred directly from the ED to another facility.  

 

Sensitivity analysis 

In a sensitivity analysis, we examined both models using a GCS cutoff ≤ 14: this is the cutoff 

used in the CRASH model, whereas the cutoff of total GCS ≤ 12, as used in the primary analysis, 

is the GCS cutoff from the IMPACT model. In a separate analysis of the CRASH model, we 

used a more conservative estimate of mortality by considering patients discharged to hospice to 

be alive at 14-days. 

 

Statistical Methods 

For both predictive models, we assessed discrimination (the model’s ability to discriminate 

between patients who died and patients who lived) using the area under the receiver operating 

characteristic curve (ROC). The area under the ROC curve (AUC) is equivalent to the C index 

[27]. ROC curves for both models were compared for statistical significance using the 

nonparametric methodology outlined by DeLong [28]. For each ROC curve, we determined 

optimal cutoff points based on Youden’s Index (which maximizes the sum of the sensitivity and 

specificity) and calculated the sensitivity and specificity at that cutoff threshold (where patients 

with predicted scores higher than the cutoff are considered to have died). Values at additional 

cutoffs are available in the Supplemental Table 1.  
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Calibration was assessed graphically using calibration plots, and formally using Brier’s score. 

Calibration refers to the agreement between predicted risk and observed outcomes, and when 

visualized on calibration plots the 45-degree line represents perfect calibration. Brier’s score is 

the mean standard error between the predicted and observed outcomes. All analysis was 

conducted using the R software environment [29] (version 3.6.3) with the OptimalCutpoints [30] 

and rms [31] packages.  

Results 

We included 26,228 patients in our primary analysis, with a mean (95% CI) age of 46.5 (46.2 – 

46.8) years old. The majority (n=18,075; 69%) had a total GCS of 8 or below, and the most 

common pupillary response was both pupils reactive (n=15,521; 59%). Motor GCS followed a 

bimodal distribution, with nearly identical proportions of patients having a motor GCS of 1 

(n=10,185; 39%) or score of 5 or 6 (n=10,336; 39%). 11,179 (43%) had major extracranial 

injury, and 10,919 (42%) died in the hospital or were discharged to hospice. Among the 10,919 

patients who developed this composite outcome, 6.9% (n=752) were discharged to hospice 

(TABLE 2). Further details on the number of patients excluded during selection for the primary 

analysis are provided in Supplemental Figure 1. 

 

External validation of predictive models 

When discrimination was assessed with ROC curves, the IMPACT model had a marginally 

greater AUC (0.863; 95% CI: 0.858 – 0.867) than the CRASH model (0.858; 95% CI: 0.858 – 

0.863); p < 0.001 (DeLong’s test). Calibration of the IMPACT model showed overprediction at 



  10 

 

   

 

lower scores but underprediction at higher scores, while the CRASH model showed consistent 

underprediction (FIGURE 1). The Brier score for the IMPACT and CRASH models were 

similar at 0.152 and 0.162, respectively (TABLE 3).  

 

When optimal cutoff thresholds were determined using Youden’s Index, the cutoff value for the 

CRASH model (33.1%) was lower than the cutoff for the IMPACT model (42.8%). At these 

respective cutoff points, both models showed similar sensitivities (CRASH: 78.2%, IMPACT: 

80.1%) and specificities (CRASH: 80.3%, IMPACT: 77.9%). These metrics are available for 

various other cutoffs in the Supplemental Table 1. 

 

Sensitivity analysis 

In our sensitivity analysis, we raised the GCS threshold for inclusion from GCS ≤ 12 to GCS ≤ 

14. As expected, the AUC in the CRASH model improved from 0.858 in the primary analysis to 

0.872 (95% CI: 0.869 – 0.876) in the sensitivity analysis. The AUC for the IMPACT model also 

increased slightly from 0.863 to 0.865 (95% CI: 0.861 – 0.869). The calibration of both models 

improved in the sensitivity analysis, with the CRASH model having a Brier score of 0.133 and 

the IMPACT model having a Brier score of 0.139 (Supplemental Figure 2). 

 

When we tested the CRASH model with a more conservative estimate of mortality by 

considering patients discharged to hospice to be alive at 14-days, the AUC significantly 

worsened from 0.858 in the primary analysis to 0.847 (95% CI: 0.842 – 0.851) in the sensitivity 
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analysis (p < 0.001). However, the Brier score marginally improved to 0.161 (Supplemental 

Figure 3). 

Discussion 

We found that both the IMPACT and CRASH models demonstrated good discrimination and 

calibration when externally validated using the NTDB.  With a sample size that surpasses the 

number of patients in the IMPACT and CRASH datasets combined, this study represents the 

largest external validation of these models to date. Given the lack of universal decision-making 

guidelines, heterogeneity in patient populations, and varying treatment preferences among 

institutions, the NTDB provides a valuable tool for validation of generalizable prognostic models 

for TBI patients. 

 

The CRASH model was developed almost exclusively using data from an international clinical 

trial, and the IMPACT model was in part developed from data collected over 20 years ago 

[14,24]. Roozenbeek et al. externally validated the IMPACT and a modified CRASH model for 

predicting 6-month outcome using five contemporary datasets, as well as for 14-day mortality in 

2513 patients from a New York Brain Trauma Foundation database [32,33]. Sun et al. 

demonstrated validity of the IMPACT model using 1124 patients derived from the SyNAPSe 

trial; however, they found calibration to be poorer than previously reported, with overestimations 

of mortality and underestimations of unfavorable outcome [34]. It is unclear whether this finding 

was primarily driven by effects of case-mix on model performance or by changes in current 

standards of care [34]. Other external validation studies have remained somewhat limited by 

small sample sizes or datasets derived from a single institution [5,25,35–37]. 
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Our findings demonstrate that both the IMPACT-Core and CRASH-Basic show good 

discrimination when predicting in-hospital mortality in patients with moderate to severe TBI 

(GCS ≤ 12 and head AIS of 2-6). These measures show slightly better performance of both basic 

models than previously described for 14-day and 6-month mortality, indicating good 

generalizability of these models for early mortality prediction in TBI patients. The calibration of 

the IMPACT model showed that estimates of risk were too moderate (i.e., estimates were too 

high for low risk patients, and too low for high risk patients) but had good calibration-in-the-

large (meaning that there was no systematic over/under-prediction). The CRASH model showed 

consistent underestimation across patients of all levels of risk (FIGURE 1). As the IMPACT 

database was collected between 1984 and 1997, it is possible that improvements in standards of 

care have resulted in better early management of lower risk patients. Still, it is possible that 

validation is also influenced by differences in distribution of variables between datasets. Similar 

to Han et al., who also noted underprediction of 14-day mortality using the CRASH-Basic 

model, our dataset had a higher average age, prevalence of patients with GCS less than 9 and 

presence of bilateral pupillary defects than the CRASH dataset [25].  

 

Furthermore, although the IMPACT model was originally designed for use in moderate to severe 

TBI (GCS of 12 and below), sensitivity analysis revealed similar discrimination and an 

unexpected improvement in calibration when including patients with GCS scores of 13-14. Mild 

TBI (mTBI) has its own unique range of severity and potential neuropsychiatric outcomes, and 

therefore necessitates its own clinical guidelines for recognition and management [38]. Although 

reported short-term mortality following mTBI is relatively low, previous studies have 
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demonstrated that a higher GCS score does not preclude poor outcomes, and the definition of 

mild TBI based on GCS cutoff (i.e., 13 versus 14) impacts the performance of mortality 

prediction models [39–42]. As such, models that can accurately distinguish mortality risk when 

including mTBI patients are beneficial in identifying who may benefit from initiating a unique 

treatment protocol. Further, they could be utilized in future efforts to determine appropriate 

severity classifications, unique risk factors, and best clinical practices [43]. 

 

Of note, previous studies have described only minor differences in performance between the two 

models. When applied to our large dataset, the performance of the two models was nearly 

identical. Although the criteria variables included in these models are similar, the application of 

one versus the other may be limited by what patient criteria can be reasonably and accurately 

obtained. Given their near equivalent performances, it may be reasonable to assume that choice 

of which model to use can be tailored to fit what patient information is available.  

 

Strengths & Limitations 

This study has some limitations, primarily that our primary outcome (mortality or discharge to 

hospice) was not the same endpoint used by the CRASH or IMPACT models in their original 

development. This was less of a concern for the CRASH model (which predicts 14-day 

mortality), as the average length of stay in our population was 14.3 days (95% CI: 14.1 – 14.5; 

data not shown). However, IMPACT predicts 6-month mortality, and thus using in-hospital 

mortality could potentially misclassify patients who lived to hospital discharge but died in the 

following months. While this is certainly a limitation, Roozenbeek et al. previously demonstrated 



  14 

 

   

 

validity of the IMPACT model in predicting 14-day mortality [33], potentially due to the 

disproportionate number of TBI-related deaths occurring early in hospital stay [44]. 

 

Additionally, we were unable to evaluate the other versions of the CRASH and IMPACT models 

that include additional variables (e.g., CRASH-CT [24], IMPACT-Extended [45]) that are 

unavailable in the NTDB. Although previous studies have shown these more complex models 

had higher predictive value than the base model, the differences are marginal. For example, in an 

external validation of the IMPACT model, the AUC for mortality only increased by 0.025 when 

the extended model was used over the core model [14]. Several other studies externally 

validating the core and extended models further demonstrate the marginality of difference 

[25,33,36]. 

 

Our results demonstrate good performance in the models which utilize the least number of 

parameters. In both clinical practice and research design, prognostic tools should be both 

accurate and easy to calculate and apply [15]. However, further studies should continue to 

evaluate performance of extended iterations of these models and their efficacy in predicting 

long-term and functional outcomes using similarly large sample sizes.  

 

Conclusions 

Models which accurately predict in-hospital mortality may be used alongside clinical data in 

order to identify individuals likely to benefit from more aggressive early intervention and to 

avoid overoptimistic prognostication. In addition, they may be used in comparative analysis 

research to identify best practices or for selecting appropriate exclusion criteria in RCTs, both of 
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which have been especially challenging given the inherent heterogeneity of TBI populations. In 

order to be of significant value, physicians and researches must be confident that these models 

are applicable to any given patient population. 

 

Using a nationwide cohort of 26,228 adults, this study demonstrates that both the CRASH-Basic 

and IMPACT-Core models, although originally designed to predict 14 day and/or 6-month 

outcomes, can accurately predict in-hospital mortality following moderate-severe TBI. Although 

we did not include patients with a GCS of 15, these results also highlight their potential value in 

predicting mild TBI outcomes as well. In addition, we have shown that the National Trauma 

Data Bank may be a valuable tool for validation and optimization of these prognostic models. As 

this dataset represents a large, generalizable cohort its use can serve to minimize the effects of 

variation between institutions and patient populations.  
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Figure Legends:  

Figure 1 text: Calibration plots demonstrating the observed versus predicted mortality for the 

CRASH (panel A) and IMPACT (panel B) models. Points on the curve that are above the grey 

45-degree line indicate the model underestimates mortality and points below indicate 

overestimation. The histogram below the plot demonstrate the distribution of predicted 

probabilities for each model. 
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Supplemental Figure 1 text: Study flow diagram. 
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Supplemental Figure 2 text: Calibration plots for the sensitivity analysis using the GCS 

threshold for inclusion as GCS ≤ 14 for both the CRASH (panel A) and IMPACT (panel B) 

models.  
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Supplemental Figure 3 text: Calibration plot comparing CRASH model from primary analysis 

(black line, same as Figure 1A in the main text) to the sensitivity analysis where patients 

discharged to hospice were considered to have lived (red line). 
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TABLE 1: Variables and outcomes of predictive models 
 

CRASH-Basic IMPACT-Core 

Variables 
included 

Age*  

Total GCS 

Pupillary reactivity 

Major extra-cranial injury 

Age 

Motor GCS 

Pupillary reactivity 

 

Outcomes 
predicted† 

14-day mortality 

6-month unfavorable 

outcome 

6-month mortality 

6-month unfavorable 

outcome 

* In the CRASH model, age is calculated as number of years over 40 
years old. Patients 40 years or younger are given an age score of zero 
† Unfavorable outcome is defined as death, vegetative state, or severe 
disability 
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TABLE 2: Descriptive statistics 

 

NTDB 
n = 26,228 

CRASH 
n = 10,008 

IMPACT 
n = 8,509 

Age, years 

 Mean (95% CI) 46.50 (46.24 – 46.76) 37.0 (36.83 – 37.17) NR 

 Median (Q25, Q75) 45 (27, 63) 32 (23, 47) 30 (21, 45) 

Total GCS 

 Mean (95% CI) 6.40 (6.36 – 6.44) - - 

 13 or higher (%) 0 (0%) 30.2% 0% 

 12 to 9 (%) 8,153 (31%) 30.4% 18% 

 8 or lower (%) 18,075 (69%) 39.5% 82% 

Motor GCS 

 5 or 6 10,336 (39%) NR 30% 

 4 3,585 (14%) NR 23% 

 3 1,080 (4%) NR 13% 

 2 854 (3%) NR 12% 

 1 10,185 (39%) NR 16% 

 Untestable or missing 188 (1%) 0% 5% 

Pupils* 

 Both reactive 15,521 (59%) 82.8% 63% 

 One reactive 1,880 (7%) 6.3% 12% 

 Neither reactive 8,827 (34%) 8.2% 25% 

Major extracranial injury 

 Yes 11,179 (43%) 77.3% NR 

 No 15,049 (57%) 22.7% NR 

In hospital mortality or discharge to hospice 

 Died 10,167 (39%) NR NR 

 Hospice 752 (3%) NR NR 

 Lived 15,309 (58%) NR NR 

* The total percentages for CRASH do not sum to 100%, as 2.7% had untestable 
pupillary responses 
Abbreviations: NR = Not reported; CI = Confidence interval; Q25 = 25th percentile; Q75 
= 75% percentile 
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TABLE 3: Discrimination, calibration, and optimal cutoffs for the CRASH 
and IMPACT scores 

 CRASH IMPACT 

Discrimination: AUC (95% CI) 

 Primary Analysis 0.858 (0.854 – 0.863) 0.863 (0.858 – 0.867) 

 GCS ≤ 14* 0.872 (0.869 – 0.876) 0.865 (0.861 – 0.869) 

 Only hospital mortality† 0.847 (0.842 – 0.851) Not tested 

Calibration: Brier score (95% CI) 

 Primary Analysis 0.162 (0.160 – 0.165) 0.152 (0.150 – 0.154) 

 GCS ≤ 14* 0.133 (0.131 – 0.135) 0.139 (0.138 – 0.141) 

 Only hospital mortality† 0.161 (0.158 – 0.164) Not tested 

Optimal cutoff value: Based on Youden’s Index 

 Cutoff value 0.331 0.428 

 Sensitivity 78.2% 80.1% 

 Specificity 80.3% 77.9% 

 PPV 73.9% 72.1% 

 NPV 83.8% 84.6% 

* Sensitivity analysis using GCS threshold for inclusion of ≤ 14 
† Sensitivity analysis in which patients discharged to hospice were no longer 
considered to have died 
Abbreviations: AUC = Area under curve; CI = Confidence interval; PPV = 
Positive predicative value; NPV = Negative predictive value 
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Supplemental Table 1: Metrics for CRASH and IMPACT models at various cutoff values 

Cutoff 

CRASH IMPACT 

Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV 

0.05 99.0% 21.6% 47.4% 96.8% 100.0% 0.0% 41.6% NaN 

0.10 95.7% 44.6% 55.2% 93.5% 99.5% 12.7% 44.8% 97.3% 

0.15 91.8% 56.7% 60.2% 90.7% 98.2% 28.3% 49.4% 95.6% 

0.20 87.1% 67.2% 65.4% 88.0% 96.6% 39.0% 53.0% 94.2% 

0.25 84.2% 73.0% 69.0% 86.6% 94.6% 49.4% 57.2% 92.8% 

0.30 80.8% 77.3% 71.7% 85.0% 91.1% 60.2% 62.0% 90.4% 

0.35 76.5% 81.7% 74.9% 83.0% 87.2% 68.8% 66.6% 88.3% 

0.40 72.0% 85.3% 77.8% 81.1% 82.7% 75.0% 70.2% 85.9% 

0.45 57.3% 89.1% 79.0% 74.5% 77.8% 80.0% 73.5% 83.5% 

0.50 53.4% 90.9% 80.8% 73.3% 73.0% 83.6% 76.0% 81.3% 

0.55 39.1% 94.2% 82.7% 68.4% 65.4% 87.5% 78.8% 78.0% 

0.60 35.1% 95.5% 84.6% 67.3% 54.8% 91.1% 81.4% 73.8% 

0.65 30.6% 96.5% 86.0% 66.1% 45.5% 93.8% 83.9% 70.7% 

0.70 26.2% 97.4% 87.7% 64.9% 37.3% 95.8% 86.3% 68.2% 

0.75 21.8% 98.2% 89.4% 63.8% 30.0% 97.2% 88.3% 66.0% 

0.80 17.4% 98.8% 91.0% 62.6% 21.1% 98.4% 90.6% 63.6% 

0.85 12.5% 99.4% 93.3% 61.4% 12.9% 99.2% 92.3% 61.5% 

0.90 7.3% 99.7% 94.9% 60.1% 4.8% 99.8% 95.8% 59.5% 

0.95 1.3% 100.0% 97.9% 58.7% 0.0% 100.0% NaN 58.4% 

1.00 0.0% 100.0% NaN 58.4% 0.0% 100.0% NaN 58.4% 

Abbreviations: PPV = Positive predicative value; NPV = Negative predictive value; 
NaN = Not a number (occurs when denominator is zero) 

 




