
Journal Club

Hunter Ratliff & Matt Lokant 07/16/2025

Article 1

JAMA | Original Investigation

Stewardship Prompts to Improve Antibiotic Selection for Pneumonia The INSPIRE Randomized Clinical Trial

Shruti K. Gohil, MD, MPH; Edward Septimus, MD; Ken Kleinman, ScD; Neha Varma, MPH; Taliser R. Avery, MS; Lauren Heim, MPH; Risa Rahm, PharmD; William S. Cooper, PharmD; Mandelin Cooper, PharmD; Laura E. McLean, MEd; Naoise G. Nickolay, RPh; Robert A. Weinstein, MD; L. Hayley Burgess, PharmD; Micaela H. Coady, MS; Edward Rosen, BA; Selsebil Sljivo, MPH; Kenneth E. Sands, MD, MPH; Julia Moody, MS; Justin Vigeant, BA; Syma Rashid, MD; Rebecca F. Gilbert, BA; Kim N. Smith, MBA; Brandon Carver, BA; Russell E. Poland, PhD; Jason Hickok, MBA; S. G. Sturdevant, PhD; Michael S. Calderwood, MD, MPH; Anastasiia Weiland, MD; David W. Kubiak, PharmD; Sujan Reddy, MD, MSc; Melinda M. Neuhauser, PharmD, MPH; Arjun Srinivasan, MD; John A. Jernigan, MD, MS; Mary K. Hayden, MD; Abinav Gowda, BS; Katyuska Eibensteiner, BA; Robert Wolf, BS; Jonathan B. Perlin, MD, PhD; Richard Platt, MD, MSc; Susan S. Huang, MD, MPH

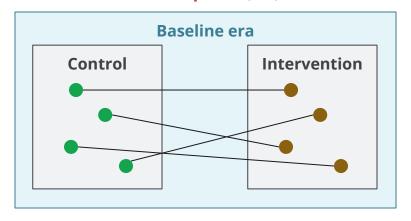
- HCA developed a classification algorithm using
 AI to predict a patient's risk of various MRDOs
 - o MRSA, pseudomonas, ESBL
- Prediction based on over 50 variables
 - o Demographics,
 - Healthcare exposures
 - Prior antibiotic use
 - Hx of MDROs, comorbidities
 - Hospital-specific MDRO prevalence

Prediction was incorporated Al into their CPOE for pneumonia

Purpose

Evaluate whether computerized provider order entry (CPOE) prompts providing patient- and pathogen-specific MDRO infection risk estimates could reduce empiric extended-spectrum antibiotics for non-critically ill patients admitted with pneumonia

Cluster-randomized trial conducted in 59 US community hospitals within the HCA Healthcare system

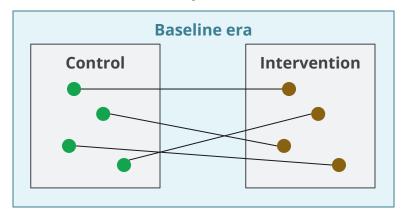


Phases of study

- **18-month baseline** (4/2017 9/2018)
- **6-month phase in** (10/2018 3/2019)
- **15-mo intervention** (4/2019 6/2020)

Cluster-randomized trial conducted in 59 US community hospitals within the HCA Healthcare system

Hospitals paired based on baseline era data → randomized hospitals (1:1)


Phases of study

- **18-month baseline** (4/2017 9/2018)
- **6-month phase in** (10/2018 3/2019)
- **15-mo intervention** (4/2019 6/2020)

Cluster-randomized trial conducted in 59 US community hospitals within the HCA Healthcare system

Hospitals paired based on baseline era data

→ randomized hospitals (1:1)

Phases of study

- 18-month baseline (4/2017 9/2018)
- **6-month phase in** (10/2018 3/2019)
- **15-mo intervention** (4/2019 6/2020)

<u>Inclusion</u>: **Non-critically ill** adults **hospitalized with pneumonia** on admission

<u>Exclusion</u>: Incarceration or transferred to ICU within 48h of admission

Study arms

Stewardship alone group (n = 30 hospitals)

- Received standard educational materials
- Quarterly coaching calls for stewardship
- Prospective deescalation based on micro results (MRSA screen, sputum cultures)

Study arms

Stewardship alone group (n = 30 hospitals)

- Received standard educational materials
- Quarterly coaching calls for stewardship
- Prospective deescalation based on micro results (MRSA screen, sputum cultures)

Stewardship + CPOE group (n = 29 hospitals)

Same as **control group** --plus-- if starting broad spectrum ABX and **patient-pathogen risk <10%**

- → CPOE prompted antimicrobial change
 - Prompts were tailored to the specific extended spectrum antimicrobial that was ordered
 - Gave them a single click option to change

MRSA risk $<10\% \rightarrow$ click to "stop vancomycin" Pseud $<10\% \rightarrow$ click to "change Zosyn to ceftriaxone"

49 963 Women **46 232** Men

Adults hospitalized with pneumonia

Mean age: 68 years

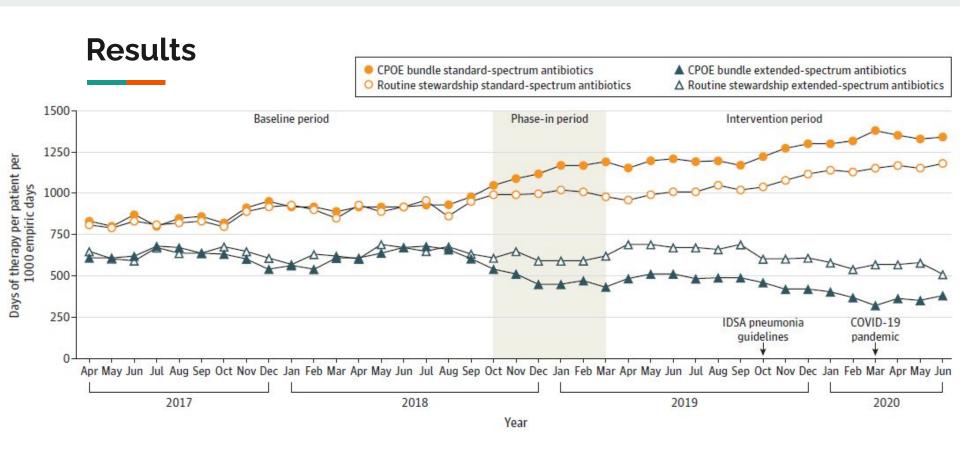
LOCATION

Community hospitals in the US

INTERVENTION

CPOE bundle

CPOE prompts recommending standard-spectrum antibiotics coupled with clinician education and feedback


Routine stewardship

Educational materials and quarterly coaching calls to maintain stewardship activities per national guidelines

PRIMARY OUTCOME

Extended-spectrum antibiotic days of therapy

Measured as individual antibiotic days during first 72-hours

Outcome		CPOE gr	<u>oup</u>	<u>C</u> (ontrol g	roup	Rate/Hazard Ratio of
Outcome	Before	After	RR/HR	Before	After	RR/HR	difference-in-differences
(1) Extended spec days	614	429	0.68*	633	615	0.94	0.72 * (0.66-0.78)

<u>Primary outcome</u>: **CPOE bundle group** experienced a **28.4% reduction in empiric extended spectrum days** of therapy (within first 72 hours)

• 12.5% of prompts resulted in extended → standard-spectrum antibiotic

Outcomo		CPOE gr	<u>oup</u>	<u>C</u>	ontrol gi	roup	Rate/Hazard Ratio of		
Outcome	Before	After	RR/HR	Before	After	RR/HR	difference-in-differences		
(1) Extended spec days	614	429	0.68*	633	615	0.94	0.72 * (0.66-0.78)		
Vanco days	235	161	0.68*	241	219	0.89*	0.77* (0.71-0.83)		
Anti-pseud days	342	240	0.67*	357	361	0.98	0.68 * (0.61-0.75)		

<u>Secondary outcomes</u>: **CPOE bundle group** had reduction in anti-MRSA and anti-pseudomonal antibiotics

Outcomo		CPOE gr	<u>oup</u>	<u>C</u>	ontrol g	roup	Rate/Hazard Ratio of		
Outcome	Before	After	RR/HR	Before	After	RR/HR	difference-in-differences		
(1) Extended spec days	614	429	0.68*	633	615	0.94	0.72 * (0.66-0.78)		
Vanco days	235	161	0.68*	241	219	0.89*	0.77 * (0.71-0.83)		
Anti-pseud days	342	240	0.67*	357	361	0.98	0.68 * (0.61-0.75)		
Length of stay (days)	6.9	7.1	1.00	6.9	6.8	1.04	0.96 (0.91-1.01)		
Days to ICU transfer	6.6	7.1	1.06	6.7	6.5	1.02	1.04 (0.89-1.21)		
Days to ABX escalation	5.5	6.1	0.81*	5.4	5.3	0.99	0.82* (0.69-0.97)		

<u>Safety outcomes</u>: Similar LOS & time to ICU transfer

• **CPOE group** had **delayed time to ABX escalation** (18% longer), but didn't affect other safety outcomes

Outcome		CPOE gr	<u>oup</u>	<u>C</u>	ontrol g	roup	Rate/Hazard Ratio of		
Outcome	Before	After	RR/HR	Before	After	RR/HR	difference-in-differences		
(1) Extended spec days	614	429	0.68*	633	615	0.94	0.72 * (0.66-0.78)		
Vanco days	235	161	0.68*	241	219	0.89*	0.77 * (0.71-0.83)		
Anti-pseud days	342	240	0.67*	357	361	0.98	0.68 * (0.61-0.75)		
Length of stay (days)	6.9	7.1	1.00	6.9	6.8	1.04	0.96 (0.91-1.01)		
Days to ICU transfer	6.6	7.1	1.06	6.7	6.5	1.02	1.04 (0.89-1.21)		
Days to ABX escalation	5.5	6.1	0.81*	5.4	5.3	0.99	0.82 * (0.69-0.97)		

Other notable findings: Algorithm classified 96% of patients as low risk of MDRO

• Less than 2% of these patients grew MDROs

Conclusions & Limitations

Al assisted computerized provider order entry prompts seems to be an effective (and likely safe) intervention to improve antibiotic stewardship in pneumonia treatment

Limitations

- <u>COVID</u>: Intervention period occurred during COVID
- <u>Hawthorne effect</u>: Getting prompts may have contributed to stewardship (irrespective of patient risk)
 - But does it matter why providers changed behavior?
- <u>Is 10% the right cut off?</u> Is a 5% risk of MRSA the same in a COPD patient vs neutropenic fever?

Article 2

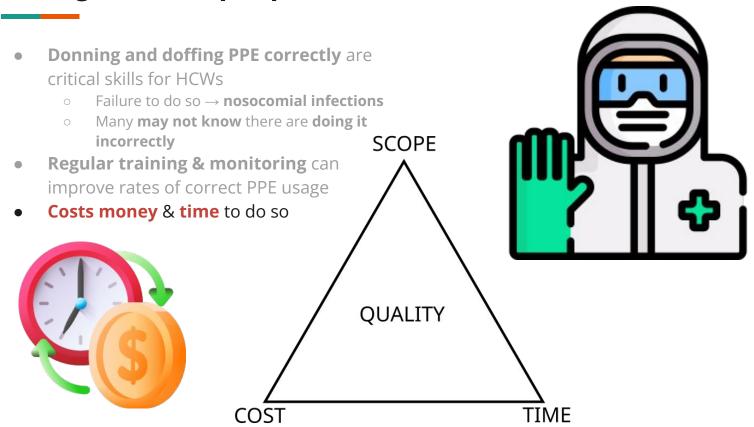
Article 2

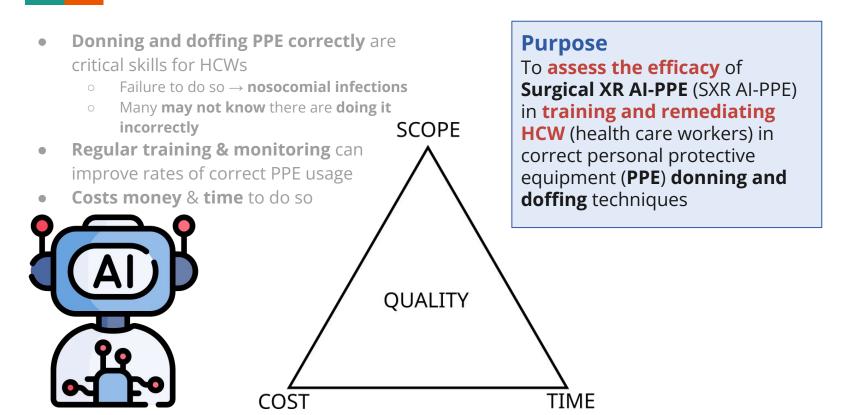
Artificial intelligence (AI) use for personal protective equipment training, remediation, and education in health care

DISSEMINATION AND IMPLEMENTATION SCIENCE FOR INFECTION PREVENTION AND CONTROL

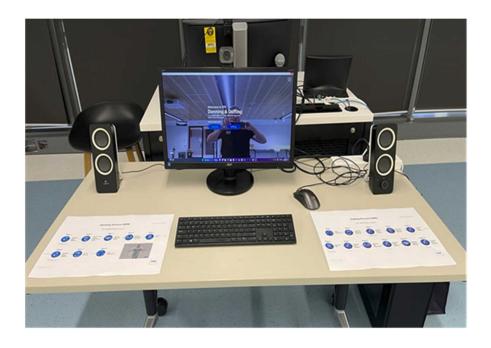
Veronica Preda [a], Zehurn Ong [a], Chandana Wijeweera [b], Terence Carney [c], Robyn Clay-Williams [d], Denuka Kankanamge [a], Tamara Preda [e], Ioannis Kopsidas [f], Michael Keith Wilson [a,c]

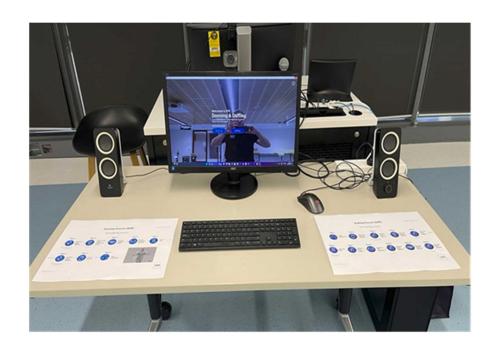
- a Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Emergency Medicine and Rural Practice, Bairnsdale Regional Hospital, Bairnsdale, Victoria, Australia
- Surgical XR, Innovation and Development Department, Sydney, New South Wales, Australia
- d Australian Institute of Health Innovation, Health Resilence & Systems Research, Sydney, New South Wales, Australia
- e Department of Surgery, University of Notre Dame, St Vincent's Clinical School, Sydney, New South Wales, Australia
- f Centre for Clinical Epidemiology and Infection Control, University of Athens, Athens, Greece


- Donning and doffing PPE correctly are critical skills for HCWs
 - o Failure to do so → **nosocomial infections**
 - Many may not know there are doing it incorrectly

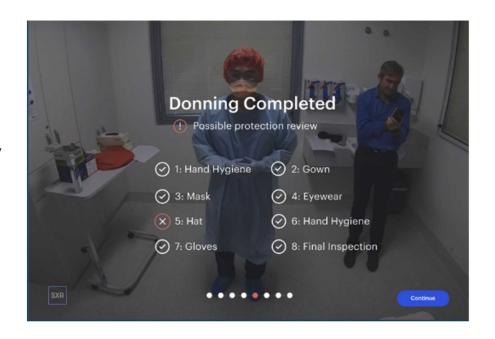


- Donning and doffing PPE correctly are critical skills for HCWs
 - o Failure to do so → **nosocomial infections**
 - Many may not know there are doing it incorrectly
- Regular training & monitoring can improve rates of correct PPE usage




Utilizes **AI and computer vision** to analyze and assess user donning and doffing

Utilizes **AI and computer vision** to analyze and assess user donning and doffing


Veronica Preda [a], Zehurn Ong [a], Chandana Wijeweera [b], **Terence Carney [c]**, Robyn Clay-Williams [d], Denuka Kankanamge [a], Tamara Preda [e], Ioannis Kopsidas [f], **Michael Keith Wilson [a,c]**

- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- b Emergency Medicine and Rural Practice, Bairnsdale Regional Hospital, Bairnsdale, Victoria, Australia
- c Surgical XR, Innovation and Development Department, Sydney, New South Wales, Australia
- d Australian Institute of Health Innovation, Health Resilence & Systems Research, Sydney, New South Wales, Australia
- e Department of Surgery, University of Notre Dame, St Vincent's Clinical School, Sydney, New South Wales, Australia
- f Centre for Clinical Epidemiology and Infection Control, University of Athens, Athens, Greece

Utilizes **AI and computer vision** to analyze and assess user donning and doffing

Real-time Feedback: Provides real-time feedback on the user's performance, helping to identify and remediate user errors promptly for improved technique

Guided Mode: Offers a step-by-step walkthrough of the PPE donning/doffing process, ideal for those unfamiliar with PPE protocols or needing a refresher

Guided Mode: Offers a step-by-step walkthrough of the PPE donning/doffing process, ideal for those unfamiliar with PPE protocols or needing a refresher

<u>Unguided Mode</u>: designed for more experienced users and providing a quicker, more streamlined assessment

"Single-center, mixed-methods, prospective cohort study (?) involving 293 HCWs (?) in Sydney, Australia"

This differs some from what is in the text

"Single-center, mixed-methods, prospective cohort study (?) involving 293 HCWs (?) in Sydney, Australia"

Assessed donning & doffing

Components of donning & doffing

Hand hygiene

Gown

Mask

Eyewear

Hat

Gloves

This differs some from what is in the text

"Single-center, mixed-methods, prospective cohort study (?) involving 293 HCWs (?) in Sydney, Australia"

Assessed donning & doffing

- Accuracy Did they do it correctly?
- **Speed** How long did it take?
- Longitudinal component Did they remember over time?
 - More on this later

Components of donning & doffing

Hand hygiene

Gown

Mask

Eyewear

Hat

Gloves

This differs some from what is in the text

"Single-center, mixed-methods, prospective cohort study (?) involving 293 HCWs (?) in Sydney, Australia"

Assessed donning & doffing

- Accuracy Did they do it correctly?
- Speed How long did it take?
- Longitudinal component Did they remember over time?
 - More on this later

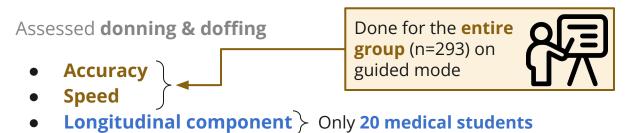
Also did **before-after surveys** to assess confidence in correct PPE use

Components of donning & doffing

Hand hygiene

Gown

Mask

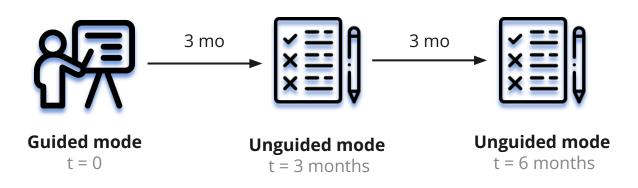

Eyewear

Hat

Gloves

This differs some from what is in the text

"Single-center, mixed-methods, prospective cohort study (?) involving 293 HCWs (???) in Sydney, Australia"


This differs some from what is in the text

"Single-center, mixed-methods, prospective cohort study (?) involving 293 HCWs (???) in Sydney, Australia"

Assessed donning & doffing

- Accuracy
- Done for the **entire group** (n=293) on **guided mode**
- Longitudinal component > Only 20 medical students

"Single-center, mixed-methods, **prospective** cohort study (?) involving 293 HCWs (?) in Sydney, Australia"

Paper calls this prospective cohort...

"Single-center, mixed-methods, prospective cohort study" (?) involving 293 HCWs (?) in Sydney, Australia"

Paper calls this prospective cohort, but I disagree

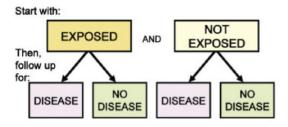
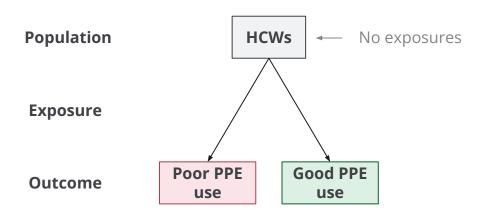


Fig. 8.3

Design of a cohort study beginning with exposed and unexposed groups.

Gordis Epidemiology (Chapter 8), probs like the 2019 version


Prospective cohort studies

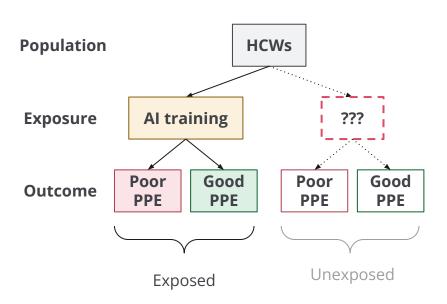
Select individuals *without the outcome* of interest **but at risk for it**, and following them over time

The aim is to compare the **incidence of outcomes between groups** based on exposure status

- <u>Exposure</u>: smokers vs non-smokers
- Outcome: lung cancer vs no cancer

"Single-center, mixed-methods, prospective cohort study" (?) involving 293 HCWs (?) in Sydney, Australia"

Prospective cohort studies

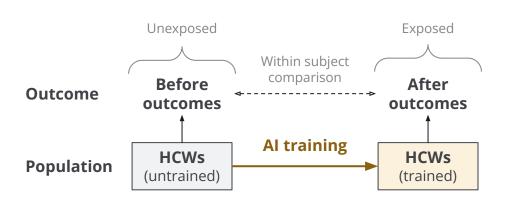

Select individuals *without the outcome* of interest **but at risk for it**, and following them over time

This part checks out

The aim is to compare the **incidence of outcomes between groups** based on exposure status

- Exposure: ...
- Outcome: Good vs poor PPE use

"Single-center, mixed-methods, prospective cohort study" (?) involving 293 HCWs (?) in Sydney, Australia"


Prospective cohort studies

Select individuals *without the outcome* of interest **but at risk for it**, and following them over time

The aim is to compare the **incidence of outcomes between groups** based on **exposure status**

- Exposure: **PPE training** vs **???**
- Outcome: Good vs poor PPE use

"Single-center, mixed-methods, prospective cohort study" (?) involving 293 HCWs (?) in Sydney, Australia"

Pre-post study

Follows a **single group over time** and measures outcomes before and after an intervention

Measures **within-subject change** (no separate control group)

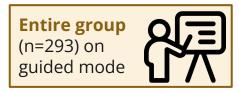
"Single-center, mixed-methods, prospective cohort study" (?) involving 293 HCWs (?) in Sydney, Australia"

Just because an **investigation is prospective** doesn't make it a **prospective cohort**

Prospective cohort studies


Select individuals *without the outcome* of interest **but at risk for it**, and following them over time

The aim is to compare the **incidence of outcomes** between groups based on exposure status


Pre-post study

Follows a single group over time and measures outcomes before and after an intervention

Measures within-person change (no separate control group)

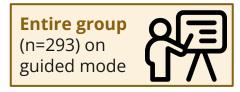
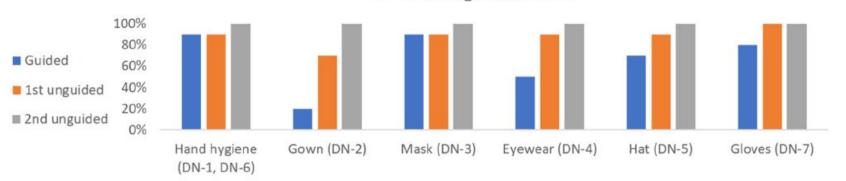


Table 1	No	Percent
Medical student	221	75%
Nursing	7	2%
Administrative staff	15	5%
Junior medical officer	13	4%
Surgeon	3	1%
Path/lab science	31	11%
Physician	3	1%

Table 1	No	Percent
Medical student	221	75%
Nursing	7	2%
Administrative staff	15	5%
Junior medical officer	13	4%
Surgeon	3	1%
Path/lab science	31	11%
Physician	3	1%

Percent failed	Donning	Doffing
Hand hygiene	29%	4%
Gown	50%	0%
Mask	23%	1%
Eyewear	43%	0%
Hat	10%	21%
Gloves	14%	0%

Table 1	No	Percent	Percent failed	Donning	Doffing
Medical student	221	75%	Hand hygiene	29%	4%
Nursing	7	2%	Gown	50%	0%
Administrative staff	15	5%	Mask	23%	1%
Junior medical officer	13	4%	Eyewear	43%	0%
Surgeon	3	1%	Hat	10%	21%
Path/lab science	31	11%	Gloves	14%	0%
Physician	3	1%		I	

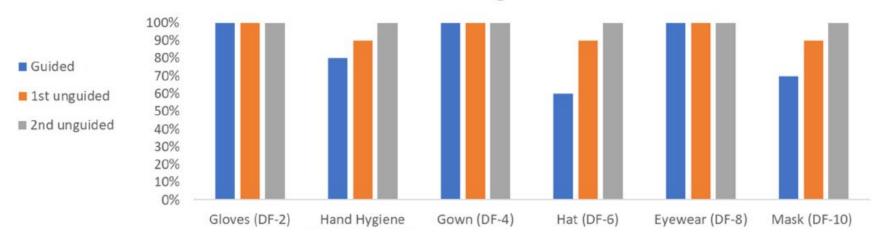

PPE time (seconds)	Before	After	Difference
Donning	208	193	15 sec (7.2%)
Doffing	195	173	22 sec (11.3%)

Longitudinal component

20 medical students

Percent failing	Hand hygiene		Hand hygiene		land hygiene Gown		Mask		Eyewear		Hat		Gloves	
(n=20)	DoNN	DoFF	DoNN	DoFF	DoNN	DoFF	DoNN	DoFF	DoNN	DoFF	DoNN	DoFF		
Baseline	5	10	40	0	5	15	25	0	5	20	10	0		
3 months	5	5	15	0	5	5	5	0	5	5	0	0		
6 months	0	0	0	0	0	0	0	0	0	0	0	0		

A: Donning Pass Rates

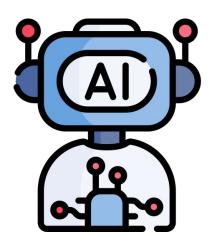


Longitudinal component

20 medical students

Percent failing	Hand hygiene		Hand hygiene		Hand hygiene		Hand hygiene		land hygiene : Gown		Mask		Eyewear		Hat		Gloves	
(n=20)	DoNN	DoFF	DoNN	DoFF	DoNN	DoFF	DoNN	DoFF	DoNN	DoFF	DoNN	DoFF						
Baseline	5	10	40	0	5	15	25	0	5	20	10	0						
3 months	5	5	15	0	5	5	5	0	5	5	0	0						
6 months	0	0	0	0	0	0	0	0	0	0	0	0						

B: Doffing Pass Rates



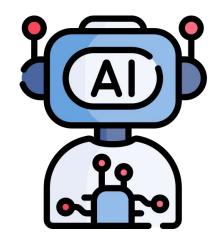
Conclusions & Limitations

- Really is a pretty cool concept with a fair amount of potential
 - It's just the paper itself doesn't really demonstrate that potential

Limitations

- Conflict of interest
- No comparison group
- Majority medical students

Good points made by the authors (even if it's a sales pitch)


- Simulation based learning is effective
- **Scaleable** (only tech is a screen and camera)
- Avoids some potential issues with the hierarchy of medicine

Conclusions & Limitations

- Really is a pretty cool concept with a fair amount of potential
 - It's just the paper itself doesn't really demonstrate that potential
- Seems like it may be suited for **surveillance & auditing**

Each participant started by logging in to their **individual...account via contactless facial recognition**

Trials were recorded in a variety of settings with both natural and artificial light as well as differing backgrounds to mimic variable clinical settings such as wards and outpatient clinics

See BlueMirror.ai

Emphasis (#2f5aa2) Primary (#3B71CA) BG subtle (#e2eaf7)

Emphasis (#b03d50) Danger (#DC4C64) BG subtle (#fae4e8)

Emphasis (#0c622e)

Emphasis (#C1443C) Pink (#FF6F61) BG subtle (#FFE9E6)

Emphasis (#3b7e94)

Info (#54B4D3) Success (#14A44D) BG subtle (#e5f4f8) BG subtle (#dcf1e4)

Emphasis (#1F7A6C) Mint/Agua (#48C9B0) BG subtle (#f1f2f3)

Emphasis (#404247) **Emphasis** (#896110) Secondary (#9FA6B2) Warning (#E4A11B) BG subtle (#fbf1dd) BG subtle (#f1f2f3)

Emphasis (#6C3483) Purple (#8E44AD) BG subtle (#F0E6F5)

Emphasis (#2C3E50) Slate grey (#5D6D7E) BG subtle (#E8ECF1)